Persistence-Based Pooling for Shape Pose Recognition
نویسندگان
چکیده
In this paper, we propose a novel pooling approach for shape classification and recognition using the bag-of-words pipeline, based on topological persistence, a recent tool from Topological Data Analysis. Our technique extends the standard max-pooling, which summarizes the distribution of a visual feature with a single number, thereby losing any notion of spatiality. Instead, we propose to use topological persistence, and the derived persistence diagrams, to provide significantly more informative and spatially sensitive characterizations of the feature functions, which can lead to better recognition performance. Unfortunately, despite their conceptual appeal, persistence diagrams are difficult to handle, since they are not naturally represented as vectors in Euclidean space and even the standard metric, the bottleneck distance is not easy to compute. Furthermore, classical distances between diagrams, such as the bottleneck and Wasserstein distances, do not allow to build positive definite kernels that can be used for learning. To handle this issue, we provide a novel way to transform persistence diagrams into vectors, in which comparisons are trivial. Finally, we demonstrate the performance of our construction on the Non-Rigid 3D Human Models SHREC 2014 dataset, where we show that topological pooling can provide significant improvements over the standard pooling methods for the shape pose recognition within the bag-of-words pipeline.
منابع مشابه
3D Face Recognition using Patch Geodesic Derivative Pattern
In this paper, a novel Patch Geodesic Derivative Pattern (PGDP) describing the texture map of a face through its shape data is proposed. Geodesic adjusted textures are encoded into derivative patterns for similarity measurement between two 3D images with different pose and expression variations. An extensive experimental investigation is conducted using the publicly available Bosphorus and BU-3...
متن کاملPose-Invariant Face Recognition: Representing Known Persons by View-based Statistical Models
We present a framework for pose-invariant face recognition using parametric linear subspace models as stored representations of known individuals. Each model can be t to an input, resulting in faces of known people whose head pose is aligned to the input face. The model's continuous nature enables the pose alignment to be very accurate, improving recognition performance, while its generalizatio...
متن کامل3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface
Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...
متن کاملPose Invariant Face Recognition Under Arbitrary Illumination Based on 3D Face Reconstruction
Pose and illumination changes from picture to picture are two main barriers toward full automatic face recognition. In this paper, a novel method to handle both pose and lighting condition simultaneously is proposed, which calibrates the pose and lighting condition to a pre-set reference condition through an illumination invariant 3D face reconstruction. First, some located facial landmarks and...
متن کاملPose Invariant Generic Object Recognition with Orthogonal Axis Manifolds in Linear Subspace
This paper addresses the problem of pose invariant Generic Object Recognition by modeling the perceptual capability of human beings. We propose a novel framework using a combination of appearance and shape cues to recognize the object class and viewpoint (axis of rotation) as well as determine its pose (angle of view). The appearance model of the object from multiple viewpoints is captured usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016